求积分的公式,求积分的公式uv

求积分的公式,求积分的公式uv

分享兴趣,传播快乐,
增长见闻,留下美好!
亲爱的您,这里是LearningYard新学苑。
今天小编为大家带来的是好学高数(九):不定积分的求法。

Share interests, spread happiness,

increase knowledge, and leave a good future!

Dear you, this is the new LearningYard Academy.

Today, the editor brings you

the studious high number (nine):The Solution of Indefinite Integral.

上次我们在好学高数(七)中已经讲到积分换元法,今天我们就说到分部积分法和有理函数的积分。

Last time, we talked about the integral substitution method in Learning Higher Mathematics (7). Today, we will talk about the integration by parts and the integration of rational functions.

一、分部积分法

此方法的关键在于将什么函数移到d的后面,初学者还需要多多尝试。经常会出现的一个问题就是需要求的东西到后面求着求着又出现了,这时候我们需要判断,观察能否移项,将要求的不定积分当作未知数求解,全部移到一侧。

例:

求积分的公式,求积分的公式uv

The key to this method is to move the function behind d. Beginners need to try more. A problem that often arises is that what needs to be solved appears again after it is solved. At this time, we need to judge whether it is possible to shift items, and solve the required indefinite integrals as unknowns, moving them all to one side.

二、有理函数的积分

1、此方法主要用于分式上下均含有未知数进而求解

1. This method is mainly used to solve the problem that the upper and lower fractions contain unknowns

主要方法格式:

求积分的公式,求积分的公式uv

如果遇到根号,就需要换元,然后再进行上述步骤。

If the root sign is encountered, you need to exchange the yuan, and then perform the above steps.

2、知识补充

2. Knowledge supplement

求积分的公式,求积分的公式uv

今天的分享就到这里了。
如果您对今天的文章有独特的想法,
欢迎给我们留言,
让我们相约明天,
祝您今天过得开心快乐!

That's all for today's sharing.

If you have unique ideas about today's article,

please leave us a message.

Let's meet tomorrow and wish you a happy day!

END

翻译:百度翻译
参考:《高等数学 第七版》同济大学数学系编

文案&排版:易春秀

审核:闫庆红

创业项目群,学习操作 18个小项目,添加 微信:790838556  备注:小项目

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 zoodoho@qq.com举报,一经查实,本站将立刻删除。
如若转载,请注明出处:https://www.zoodoho.com/84500.html